3,460 research outputs found

    Neural Unpredictability, the Interpretation of Quantum Theory, and the Mind-Body Problem

    Get PDF
    It has been suggested, on the one hand, that quantum states are just states of knowledge; and, on the other, that quantum theory is merely a theory of correlations. These suggestions are confronted with problems about the nature of psycho-physical parallelism and about how we could define probabilities for our individual future observations given our individual present and previous observations. The complexity of the problems is underlined by arguments that unpredictability in ordinary everyday neural functioning, ultimately stemming from small-scale uncertainties in molecular motions, may overwhelm, by many orders of magnitude, many conventionally recognized sources of observed ``quantum'' uncertainty. Some possible ways of avoiding the problems are considered but found wanting. It is proposed that a complete understanding of the relationship between subjective experience and its physical correlates requires the introduction of mathematical definitions and indeed of new physical laws.Comment: 27 pages, plain TeX, v2: missing reference inserted, related papers from http://www.poco.phy.cam.ac.uk/~mjd101

    On Many-Minds Interpretations of Quantum Theory

    Get PDF
    This paper is a response to some recent discussions of many-minds interpretations in the philosophical literature. After an introduction to the many-minds idea, the complexity of quantum states for macroscopic objects is stressed. Then it is proposed that a characterization of the physical structure of observers is a proper goal for physical theory. It is argued that an observer cannot be defined merely by the instantaneous structure of a brain, but that the history of the brain's functioning must also be taken into account. Next the nature of probability in many-minds interpretations is discussed and it is suggested that only discrete probability models are needed. The paper concludes with brief comments on issues of actuality and identity over time.Comment: 16 pages, plain TeX, no macros required. Revised following comments November 199

    Finitary and Infinitary Mathematics, the Possibility of Possibilities and the Definition of Probabilities

    Get PDF
    Some relations between physics and finitary and infinitary mathematics are explored in the context of a many-minds interpretation of quantum theory. The analogy between mathematical ``existence'' and physical ``existence'' is considered from the point of view of philosophical idealism. Some of the ways in which infinitary mathematics arises in modern mathematical physics are discussed. Empirical science has led to the mathematics of quantum theory. This in turn can be taken to suggest a picture of reality involving possible minds and the physical laws which determine their probabilities. In this picture, finitary and infinitary mathematics play separate roles. It is argued that mind, language, and finitary mathematics have similar prerequisites, in that each depends on the possibility of possibilities. The infinite, on the other hand, can be described but never experienced, and yet it seems that sets of possibilities and the physical laws which define their probabilities can be described most simply in terms of infinitary mathematics.Comment: 21 pages, plain TeX, related papers from http://www.poco.phy.cam.ac.uk/~mjd101

    THE CONTRIBUTION OF ENVIRONMENTAL AMENITIES TO AGRICULTURAL LAND VALUES: HEDONIC MODELLING USING GEOGRAPHIC INFORMATION SYSTEMS DATA

    Get PDF
    Geographic Information Systems (GIS) data are used in a hedonic model to measure the impact of recreational and scenic amenities on agricultural land values. Results indicate agricultural land values are determined by environmental amenities as well as production attributes. Significant amenity variables included scenic view, elk habitat and fishery productivity.Environmental Economics and Policy, Land Economics/Use,

    GeoZui3D: Data Fusion for Interpreting Oceanographic Data

    Get PDF
    GeoZui3D stands for Geographic Zooming User Interface. It is a new visualization software system designed for interpreting multiple sources of 3D data. The system supports gridded terrain models, triangular meshes, curtain plots, and a number of other display objects. A novel center of workspace interaction method unifies a number of aspects of the interface. It creates a simple viewpoint control method, it helps link multiple views, and is ideal for stereoscopic viewing. GeoZui3D has a number of features to support real-time input. Through a CORBA interface external entities can influence the position and state of objects in the display. Extra windows can be attached to moving objects allowing for their position and data to be monitored. We describe the application of this system for heterogeneous data fusion, for multibeam QC and for ROV/AUV monitoring

    Charge Saturation and Neutral Substitutions in Halomethanes and Their Group 14 Analogues

    Get PDF
    A computational analysis of the charge distribution in halomethanes and their heavy analogues (MH4-nXn: M= C, Si, Ge, Sn, Pb; X = F, Cl, Br, I) as a function of n uncovers a previously unidentified saturation limit for fluorides when M ≠ C. We examine the electron densities obtained at the CCSD, MP2(full), B3PW91, and HF levels of theory for 80 molecules for four different basis sets. A previously observed substituent independent charge at F in fluoromethanes is shown to be a move toward saturation that is restricted by the low polarizability of C. This limitation fades into irrelevance for the more polarizable M central atoms such that a genuine F saturation is realized in those cases. A conceptual model leads to a function of the form [qM(n) -- qM(n)] = a[χA\u27 -- χA] + b that links the electronegativities (χ) of incoming and leaving atoms (e.g., A\u27 = X and A = H for the halogenation of MH4-nXn) and the associated charge shift at M. We show that the phenomenon in which the charge at the central atom, qM, is itself independent of n (e.g., at carbon in CH4-nBrn) is best described as an “M-neutral substitution”—not saturation. Implications of the observed X saturation and M-neutral substitutions for larger organic and inorganic halogenated molecules and polymeric materials are identified
    • 

    corecore